Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Phys Rev Lett ; 132(14): 146601, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640375

RESUMO

The layer-dependent Chern number (C) in MnBi_{2}Te_{4} is characterized by the presence of a Weyl semimetal state in the ferromagnetic coupling. However, the influence of a key factor, namely, the exchange coupling, remains unexplored. This study focuses on characterizing the C=2 state in MnBi_{2}Te_{4}, which is classified as a higher C state resulting from the anomalous n=0 Landau levels (LLs). Our findings demonstrate that the exchange coupling parameter strongly influences the formation of this Chern state, leading to a competition between the C=1 and 2 states. Moreover, the emergence of odd-even LL sequences, resulting from the breaking of LL degeneracy, provides compelling evidence for the strong exchange coupling strength. These findings highlight the significance of the exchange coupling in understanding the behavior of Chern states and LLs in magnetic quantum systems.

2.
Nat Commun ; 15(1): 2881, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570519

RESUMO

Achieving spin-pinning at the interface of hetero-bilayer ferromagnet/antiferromagnet structures in conventional exchange bias systems can be challenging due to difficulties in interface control and the weakening of spin-pinning caused by poor interface quality. In this work, we propose an alternative approach to stabilize the exchange interaction at the interface of an uncompensated antiferromagnet by utilizing a gradient of interlayer exchange coupling. We demonstrate this exchange interaction through a designed field training protocol in the odd-layer topological antiferromagnet MnBi2Te4. Our results reveal a remarkable field-trained exchange bias of up to ~ 400 mT, which exhibits high repeatability and can be easily reset by a large training field. Notably, this field-trained exchange bias effect persists even with zero-field initialization, presenting a stark contrast to the traditional field-cooled exchange bias. The highly tunable exchange bias observed in this single antiferromagnet compound, without the need for an additional magnetic layer, provides valuable insight into the exchange interaction mechanism. These findings pave the way for the systematic design of topological antiferromagnetic spintronics.

3.
Sci Rep ; 14(1): 7844, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570726

RESUMO

Obesity, a worldwide epidemic, leads to various metabolic disorders threatening human health. In response to stress or fasting, glucocorticoid (GC) levels are elevated to promote food intake. This involves GC-induced expression of the orexigenic neuropeptides in agouti-related protein (AgRP) neurons of the hypothalamic arcuate nucleus (ARC) via the GC receptor (GR). Here, we report a selective GR modulator (SGRM) that suppresses GR-induced transcription of genes with non-classical glucocorticoid response elements (GREs) such as Agrp-GRE, but not with classical GREs, and via this way may serve as a novel anti-obesity agent. We have identified a novel SGRM, 2-O-trans-p-coumaroylalphitolic acid (Zj7), a triterpenoid extracted from the Ziziphus jujube plant, that selectively suppresses GR transcriptional activity in Agrp-GRE without affecting classical GREs. Zj7 reduces the expression of orexigenic genes in the ARC and exerts a significant anorexigenic effect with weight loss in both high fat diet-induced obese and genetically obese db/db mouse models. Transcriptome analysis showed that Zj7 represses the expression of a group of orexigenic genes including Agrp and Npy induced by the synthetic GR ligand dexamethasone (Dex) in the hypothalamus. Taken together, Zj7, as a selective GR modulator, showed beneficial metabolic activities, in part by suppressing GR activity in non-classical GREs in orexigenic genes. This study demonstrates that a potential anorexigenic molecule may allow GRE-specific inhibition of GR transcriptional activity, which is a promising approach for the treatment of metabolic disorders.


Assuntos
Doenças Metabólicas , Receptores de Glucocorticoides , Camundongos , Animais , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Proteína Relacionada com Agouti/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo
4.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501936

RESUMO

A scintillator-based Timepix3 (TPX3) detector was developed to resolve the high-frequency modulation of a neutron beam in both spatial and temporal domains, as required for neutron spin-echo experiments. In this system, light from a scintillator is manipulated with an optical lens and is intensified using an image intensifier, making it detectable with the TPX3 chip. Two different scintillators, namely, 6LiF:ZnS(Ag) and 6LiI:Eu, were investigated to achieve the high resolution needed for spin-echo modulated small-angle neutron scattering (SEMSANS) and modulation of intensity with zero effort (MIEZE). The methodology for conducting event-mode analysis is described, including the optimization of clustering parameters for both scintillators. The detector with both scintillators was characterized with respect to detection efficiency, spatial resolution, count rate, uniformity, and γ-sensitivity. The 6LiF:ZnS(Ag) scintillator-based detector achieved a spatial resolution of 200 µm and a count rate capability of 1.1 × 105 cps, while the 6LiI:Eu scintillator-based detector demonstrated a spatial resolution of 250 µm and a count rate capability exceeding 2.9 × 105 cps. Furthermore, high-frequency intensity modulations in both spatial and temporal domains were successfully observed, confirming the suitability of this detector for SEMSANS and MIEZE techniques, respectively.

5.
Adv Nutr ; 15(1): 100136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38436218

RESUMO

Gut microbiota have crucial effects on brain function via the gut-brain axis. Growing evidence suggests that this interaction is mediated by signaling molecules derived from dietary components metabolized by the intestinal microbiota. Although recent studies have provided a substantial understanding of the cell-specific effects of gut microbial molecules in gut microbiome-brain research, further validation is needed. This review presents recent findings on gut microbiota-derived dietary metabolites that enter the systemic circulation and influence the cell-to-cell interactions between gut microbes and cells in the central nervous system (CNS), particularly microglia, astrocytes, and neuronal cells, ultimately affecting cognitive function, mood, and behavior. Specifically, this review highlights the roles of metabolites produced by the gut microbiota via dietary component transformation, including short-chain fatty acids, tryptophan metabolites, and bile acid metabolites, in promoting the function and maturation of brain cells and suppressing inflammatory signals in the CNS. We also discuss future directions for gut microbiome-brain research, focusing on diet-induced microbial metabolite-based therapies as possible novel approaches to mental health treatment.


Assuntos
Microbioma Gastrointestinal , Humanos , Encéfalo , Sistema Nervoso Central , Dieta , Comunicação Celular , Bactérias
6.
Nano Lett ; 24(7): 2181-2187, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340079

RESUMO

Recently discovered as an intrinsic antiferromagnetic topological insulator, MnBi2Te4 has attracted tremendous research interest, as it provides an ideal platform to explore the interplay between topological and magnetic orders. MnBi2Te4 displays distinct exotic topological phases that are inextricably linked to the different magnetic structures of the material. In this study, we conducted electrical transport measurements and systematically investigated the anomalous Hall response of epitaxial MnBi2Te4 films when subjected to an external magnetic field sweep, revealing the different magnetic structures stemming from the interplay of applied fields and the material's intrinsic antiferromagnetic (AFM) ordering. Our results demonstrate that the nonsquare anomalous Hall loop is a consequence of the distinct reversal processes within individual septuple layers. These findings shed light on the intricate magnetic structures in MnBi2Te4 and related materials, offering insights into understanding their transport properties and facilitating the implementation of AFM topological electronics.

7.
Carbohydr Polym ; 327: 121634, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171653

RESUMO

Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.


Assuntos
Quitosana , Adesivos Teciduais , Polissacarídeos , Polímeros , Alginatos , Adesivos
8.
Nutr Res Pract ; 17(5): 883-898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780220

RESUMO

BACKGROUND/OBJECTIVES: Probiotics have been suggested as potent modulators of age-related disorders in immunological functions, yet little is known about sex-dependent effects of probiotic supplements. Therefore, we aimed to investigate sex-dependent effects of probiotics on profiles of the gut microbiota and peripheral immune cells in healthy older adults. SUBJECTS/METHODS: In a randomized, double-blind, placebo-controlled, multicenter trial, healthy elderly individuals ≥ 65 yrs old were administered probiotic capsules (or placebo) for 12 wk. Gut microbiota was analyzed using 16S rRNA gene sequencing and bioinformatic analyses. Peripheral immune cells were profiled using flow cytometry for lymphocytes (natural killer, B, CD4+ T, and CD8+ T cells), dendritic cells, monocytes, and their subpopulations. RESULTS: Compared with placebo, phylum Firmicutes was significantly reduced in the probiotic group in women, but not in men. At the genus level, sex-specific responses included reductions in the relative abundances of pro-inflammatory gut microbes, including Catabacter and unclassified_Coriobacteriales, and Burkholderia and unclassified Enterobacteriaceae, in men and women, respectively. Peripheral immune cell profiling analysis revealed that in men, probiotics significantly reduced the proportions of dendritic cells and CD14+ CD16- monocytes; however, these effects were not observed in women. In contrast, the proportion of total CD4+ T cells was significantly reduced in women in the probiotic group. Additionally, serum lipopolysaccharide-binding protein levels showed a decreasing tendency that were positively associated with changes in gut bacteria, including Catabacter (ρ = 0.678, P < 0.05) and Burkholderia (ρ = 0.673, P < 0.05) in men and women, respectively. CONCLUSIONS: These results suggest that probiotic supplementation may reduce the incidence of inflammation-related diseases by regulating the profiles of the gut microbiota and peripheral immune cells in healthy elders in a sex-specific manner.

9.
Nanomaterials (Basel) ; 13(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836296

RESUMO

Magnetic topological insulators (MTIs) are a group of materials that feature topological band structures with concurrent magnetism, which can offer new opportunities for technological advancements in various applications, such as spintronics and quantum computing. The combination of topology and magnetism introduces a rich spectrum of topological phases in MTIs, which can be controllably manipulated by tuning material parameters such as doping profiles, interfacial proximity effect, or external conditions such as pressure and electric field. In this paper, we first review the mainstream MTI material platforms where the quantum anomalous Hall effect can be achieved, along with other exotic topological phases in MTIs. We then focus on highlighting recent developments in modulating topological properties in MTI with finite-size limit, pressure, electric field, and magnetic proximity effect. The manipulation of topological phases in MTIs provides an exciting avenue for advancing both fundamental research and practical applications. As this field continues to develop, further investigations into the interplay between topology and magnetism in MTIs will undoubtedly pave the way for innovative breakthroughs in the fundamental understanding of topological physics as well as practical applications.

10.
Life Sci ; 334: 122194, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865176

RESUMO

AIMS: Long-term consumption of a western diet (WD), which is characterized by high intake of saturated fats and sugary drinks, causes cognitive impairment. However, the molecular mechanism by which WD induces cognitive impairment remains unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is expressed in extra-oral tissues, including the brain, and particularly in the hippocampus. This study investigated whether TAS1R3 regulates WD-induced cognitive impairment in mice. MAIN METHODS: Male C57BL/6J wild-type (WT) and Tas1r3 knock-out (KO) mice were fed either a normal diet (ND) or WD for 18 weeks. Cognitive functions were assessed using novel object recognition and Barnes maze tests. The mechanisms underlying WD-induced cognitive impairment were assessed using RNA-sequencing and bioinformatics analysis. KEY FINDINGS: Cognitive impairment was observed in WT mice fed WD (WT-WD) compared with WT-ND mice. Conversely, mice lacking TAS1R3 were not cognitively impaired even under long-term WD feeding. Hippocampal transcriptome analysis revealed upregulated AMP-activated protein kinase (AMPK) signaling and increased AMPK-targeted sirtuin 3 expression in KO-WD mice. Pathway enrichment analysis showed that response to oxidative stress was downregulated, whereas neurogenesis was upregulated in dentate gyrus of KO-WD mice. In vitro studies validated the findings, indicating that Tas1r3 knockdown directly upregulated decreased sirtuin 3 expression, its downstream genes-related to oxidative stress, and apoptosis induced by WD condition in hippocampal neuron cells. SIGNIFICANCE: TAS1R3 acts as a critical mediator of WD-induced cognitive impairment in mice, thereby offering potential as a novel therapeutic target to prevent WD-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Dieta Ocidental , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Disfunção Cognitiva/etiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sirtuína 3/metabolismo , Paladar , Receptores Acoplados a Proteínas G/metabolismo
11.
Nat Commun ; 14(1): 5558, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689721

RESUMO

In multilayered magnetic topological insulator structures, magnetization reversal processes can drive topological phase transitions between quantum anomalous Hall, axion insulator, and normal insulator states. Here we report an examination of the critical behavior of two such transitions: the quantum anomalous Hall to normal insulator (QAH-NI), and quantum anomalous Hall to axion insulator (QAH-AXI) transitions. By introducing a new analysis protocol wherein temperature dependent variations in the magnetic coercivity are accounted for, the critical behavior of the QAH-NI and QAH-AXI transitions are evaluated over a wide range of temperature and magnetic field. Despite the uniqueness of these different transitions, quantized longitudinal resistance and Hall conductance are observed at criticality in both cases. Furthermore, critical exponents were extracted for QAH-AXI transitions occurring at magnetization reversals of two different magnetic layers. The observation of consistent critical exponents and resistances in each case, independent of the magnetic layer details, demonstrates critical behaviors in quantum anomalous Hall transitions to be of electronic rather than magnetic origin. Our finding offers a new avenue for studies of phase transition and criticality in QAH insulators.

12.
Adv Drug Deliv Rev ; 200: 115051, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549848

RESUMO

Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
13.
Nat Commun ; 14(1): 4805, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558682

RESUMO

The intrinsic magnetic topological insulator, Mn(Bi1-xSbx)2Te4, has been identified as a Weyl semimetal with a single pair of Weyl nodes in its spin-aligned strong-field configuration. A direct consequence of the Weyl state is the layer dependent Chern number, [Formula: see text]. Previous reports in MnBi2Te4 thin films have shown higher [Formula: see text] states either by increasing the film thickness or controlling the chemical potential. A clear picture of the higher Chern states is still lacking as data interpretation is further complicated by the emergence of surface-band Landau levels under magnetic fields. Here, we report a tunable layer-dependent [Formula: see text] = 1 state with Sb substitution by performing a detailed analysis of the quantization states in Mn(Bi1-xSbx)2Te4 dual-gated devices-consistent with calculations of the bulk Weyl point separation in the doped thin films. The observed Hall quantization plateaus for our thicker Mn(Bi1-xSbx)2Te4 films under strong magnetic fields can be interpreted by a theory of surface and bulk spin-polarised Landau level spectra in thin film magnetic topological insulators.

14.
Biomater Res ; 27(1): 57, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287042

RESUMO

In recent years, polymer-based tissue adhesives (TAs) have been developed as an alternative to sutures to close and seal incisions or wounds owing to their ease of use, rapid application time, low cost, and minimal tissue damage. Although significant research is being conducted to develop new TAs with improved performances using different strategies, the applications of TAs are limited by several factors, such as weak adhesion strength and poor mechanical properties. Therefore, the next-generation advanced TAs with biomimetic and multifunctional properties should be developed. Herein, we review the requirements, adhesive performances, characteristics, adhesive mechanisms, applications, commercial products, and advantages and disadvantages of proteins- and synthetic polymer-based TAs. Furthermore, future perspectives in the field of TA-based research have been discussed.

15.
PLoS One ; 18(6): e0286951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315057

RESUMO

Not only the water quantity consumed but also the source of drinking water has been considered for their health benefits, but there is limited evidence. We aimed to determine whether the amount and type of drinking water affect physiological and biological functions, including brain function, by confirming how it affects gut microbiota which has an important regulatory role in host physiology. Three-week-old infant mice were subjected to 1) a water restriction experiment (control group, ad libitum consumption of distilled water; dehydration group, time-limited access to distilled water [15 min/day]) and 2) different water source experiment (distilled water, purified water, spring water, and tap water groups). The gut microbiota and cognitive development were analyzed using the 16S ribosomal ribonucleic acid sequencing method and the Barnes maze, respectively. The relative abundance of Firmicutes and Bacteroidetes and the Firmicutes-to-Bacteroidetes ratio (F/B ratio) changed depending on age (juveniles vs. infants). Insufficient water intake reversed these developmental changes, showing that the relative abundances of Bacteroidetes and Firmicutes and the F/B ratio in dehydrated juvenile mice were similar to those in normal infant mice. Additionally, clustering analysis revealed no significant differences in the intestinal flora in the mice from the different drinking water sources; however, dehydration significantly altered the composition of the genera compared to the other water source groups wherein water was provided ad libitum. Moreover, cognitive development was significantly disrupted by insufficient water intake, although the type of drinking water had no significant influence. Cognitive decline, measured by relative latency, was positively associated with the relative abundance of unclassified Erysipelotrichaceae that were in significantly high relative abundance in the dehydration group. These results suggest that the water quantity consumed, rather than the mineral content of drinking water, is imperative for shaping the early gut microbiota associated with cognitive development during infancy.


Assuntos
Disfunção Cognitiva , Água Potável , Microbioma Gastrointestinal , Animais , Camundongos , Desidratação , Cognição , Bacteroidetes , Firmicutes
16.
Clin Nutr ; 42(6): 1025-1033, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150125

RESUMO

BACKGROUND & AIMS: The beneficial effects of probiotic consumption on age-related decline in cerebral function have been previously reported in the literature; however, the mechanistic link between gut and brain interactions has not yet been fully elucidated. Therefore, this study aimed to identify the role of gut microbiota-derived metabolites in gut-brain interactions via blood metabolomic profiling analysis in clinical trials and in vitro mechanistic studies. METHODS: A randomized, double-blind, placebo-controlled, multicenter clinical trial was conducted in 63 healthy elderly individuals (≥65 years of age). Participants were administered either placebo (placebo group, N = 31) or probiotic capsules (Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI; probiotics group, N = 32) for 12 weeks. Global and targeted metabolomic profiling analyses of their blood samples were then performed using 1H nuclear magnetic resonance and liquid chromatography-mass spectrometry methods, both at baseline and at the end of the trial. Gut microbial analysis was conducted using the 16S ribosomal ribonucleic acid gene sequencing method. Subsequently, microglial BV2 cells were treated in vitro with indole-3-propionic acid (IPA) following lipopolysaccharide stimulation, and neuronal SH-SY5Y cells were treated with conditioned media from the BV2 cells. Finally, the levels of pro-inflammatory cytokines in BV2 cells and neurotrophins in SH-SY5Y cells were quantified using a real-time polymerase chain reaction or enzyme-linked immunosorbent assay. RESULTS: The metabolomic profiling analyses showed that probiotic consumption significantly altered the levels of metabolites involved in tryptophan metabolism (P < 0.01). Among these metabolites, gut microbiota-produced IPA had a 1.91-fold increase in the probiotics group (P < 0.05) and showed a significant relation to gut bacterial profiles (P < 0.01). Elevated IPA levels were also positively associated with the level of serum brain-derived neurotropic factor (BDNF) in the probiotics group (r = 0.28, P < 0.05), showing an inverse trend compared to the placebo group. In addition, in vitro treatment with IPA (5 µM) significantly reduced the concentration of proinflammatory TNF-α in activated microglia (P < 0.05), and neuronal cells cultured with conditioned media from IPA-treated microglia showed a significant increase in BDNF and nerve growth factor production (P < 0.05). CONCLUSIONS: These results show that gut microbiota-produced IPA plays a role in protecting the microglia from inflammation, thus promoting neuronal function. Therefore, this suggests that IPA is a significant mediator linking the interaction between the gut and the brain in the elderly with probiotic supplementation.


Assuntos
Microbioma Gastrointestinal , Neuroblastoma , Fármacos Neuroprotetores , Probióticos , Humanos , Idoso , Microbioma Gastrointestinal/fisiologia , Fármacos Neuroprotetores/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Meios de Cultivo Condicionados , Método Duplo-Cego
17.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125853

RESUMO

We report the implementation of a dilution refrigerator-based scanning microwave impedance microscope with a base temperature of ∼100 mK. The vibration noise of our apparatus with tuning-fork feedback control is as low as 1 nm. Using this setup, we have demonstrated the imaging of quantum anomalous Hall states in magnetically (Cr and V) doped (Bi, Sb)2Te3 thin films grown on mica substrates. Both the conductive edge modes and topological phase transitions near the coercive fields of Cr- and V-doped layers are visualized in the field-dependent results. Our study establishes the experimental platform for investigating nanoscale quantum phenomena at ultralow temperatures.

18.
Adv Mater ; 35(31): e2300391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207689

RESUMO

The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr-doped (Bi,Sb)2 Te3 (CBST) grown on an uncompensated antiferromagnetic insulator Al-doped Cr2 O3 . Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al-Cr2 O3 surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange-biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al-Cr2 O3 layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH-based spintronics.

19.
Anim Biosci ; 36(8): 1241-1251, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36915923

RESUMO

OBJECTIVE: Egg yolk immunoglobulin (IgY) is an antibiotic alternative to prevent and fight intestinal pathogenic infections. This study aimed to investigate the effects of sodium alginate/chitosan/sodium alginate IgY microcapsules on the growth performance, serum parameters, and intestinal health of broiler chickens. METHODS: One-day-old broilers (Ross 308) were divided into five treatments, each with 10 replicates of five chickens. The dietary treatments were maintained for 28 days and consisted of a basal diet (NC), basal diet + 500 mg chlortetracycline/kg diet (CH), basal diet + 50 mg non-microencapsulated IgY/kg diet (NM), basal diet + 600 mg low levels microencapsulated IgY/kg diet (LM), and basal diet + 700 mg high levels microencapsulated IgY/kg diet (HM). RESULTS: Throughout the 28-day trial period, the NM, LM, HM, and CH groups increased average daily gain compared with the NC group (p<0.05), and the HM group reduced feed conversion ratio compared with the CH group (p<0.05). The LM and HM groups increased relative organ weights of thymus and spleen compared with the CH and NM groups (p<0.05). The HM group improved the duodenal, jejunal and ileum villi height (VH) and villus height to crypt depth ratio (VH:CD) compared with the CH and NM groups (p<0.05). Compared with the CH group, the HM group increased serum immunoglobulin (IgA), immunoglobulin G (IgG), superoxide dismutase, total antioxidant capacity, and glutathione peroxidase levels (p<0.05), and decreased serum malondialdehyde levels (p<0.05). Compared with the NC group, the NM, LM, HM, and CH groups reduced colonic Escherichia coli and Salmonella levels (p<0.05). and the HM group promoted the levels of lactic acid bacteria and bifidobacteria compared with the CH group (p<0.05). CONCLUSION: Microencapsulation could be considered as a way to improve the efficiency of IgY. The 700 mg high levels microencapsulated IgY/kg diet could potentially be used as an alternative to antibiotics to improve the immune performance and intestinal health, leading to better performance of broiler chickens.

20.
Tissue Eng Regen Med ; 20(2): 155-156, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36964871

RESUMO

Bone morphogenic protein-2 (BMP-2)-conjugated three-dimensional (3-D)-printed poly (L-lactic acid)(PLLA) scaffold is likely promising as an effective bone substitute for enhancing bone regeneration of massive bone defects caused by tumor resection, traumatic injury, or congenital diseases. The authors developed a new bone substitute using a novel strategy composed of 3-D-printed PLLA scaffolds through a sequential coating of catechol-conjugated alginate (C-AL), BMP-2, and collagen (CO). The 3-D-printed PLLA scaffold was successfully obtained with 5 mm of diameter, 1 mm of thickness, 400 µm of pore size, 187-230 µm of grid thickness, and 82% of porosity. Alkaline phosphatase (ALP) activity of the BMP-2-immobilized PLLA scaffold in MC3T3-E1 and W-20-17 cells was more increased than BMP-2 itself due to the controlled release of BMP-2 from the scaffold. Tenfold new bone formation for the BMP-2-immobilized PLLA scaffold was obtained by micro-CT analysis than PLLA scaffold without BMP-2 weeks after 4 weeks of transplantation model mouse. Further another big animal model study should be performed before clinical trials.


Assuntos
Proteína Morfogenética Óssea 2 , Substitutos Ósseos , Alicerces Teciduais , Animais , Camundongos , Regeneração Óssea , Ácido Láctico , Engenharia Tecidual/métodos , Proteína Morfogenética Óssea 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...